
S1 Appendix: Mathematical Properties of
Random Processes

We have considered several spatiotemporal physiological quantities in this
work, such as the drug concentration c(r, t), susceptibility α(r), and diffusion
coefficient D(r). The point of view of this work is that such physiological
processes can be modeled as random spatiotemporal functions f = f(r, t). This
assumption facilitated the rigorous computation of clinically relevant quantities
such as probability of tumor control.

The goal of this supplement is to provide a brief discussion of some of the
mathematical properties of random processes that were used in this work. Gen-
eral references for spatial random processes include [1, 2]; for an introduction
in the context of image science, see [3, 4].

The statistical properties of a random quantity X can be quantified by
defining a probability function forX, which assigns a number 0 ≤ Pr(X ∈ E) ≤
1 that X assumes values in the event set E. This can either be interpreted as a
limiting frequency of occurrence in repeated trials, or as a prediction of chance
conditional on available information [5]. Both interpretations are useful in the
context of precision medicine.

We have assumed in this work that all finite-dimensional random quantities
posses a Probability Density Function or PDF, which is a (possibly generalized)
function pr(x) defined so that the average of any function of X is given by〈

g(X)
〉

=

∫
∞
dnx g(x)pr(x), (1)

where n is the dimension of X. As a special case, the probability Pr(X ∈ E) is
given by (1) with g(x) = 1 if x ∈ E and zero otherwise. In this sense, the PDF
pr(x) contains all statistical information about X, because any desired average
value or probability can be obtained from it. If X is a random process, however,
the issue of defining a PDF is much more subtle. Assuming that realizations are
square integrable functions, i.e. f ∈ L2, we would austensibly require a PDF
in infinitely many variables as the dimension of L2 is infinite. While it is still
sometimes possible to define PDFs for random processes, doing so requires fixing
a so-called reference measure, and the choice of reference measure is usually not
clear in infinite dimensions [6]. We avoid this technicality by working with the
characteristic functional.

As stated in the main text, the spatial statistics of a random process f(r, t)
are fully described by the characteristic functional, defined as

Ψf [φ, t] =
〈

exp [−2πi(φ,f)]
〉

(2)

where the angle brackets indicate a statistical average (expectation) over all
realizations of the process f , and we define the scalar product of φ and f as

(φ,f) =

∫
V

d3r φ(r)f(r, t). (3)
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We assume that the test function φ is chosen so that (3) is well-defined; a more
extensive discussion of this issue requires the theory of generalized functions
which we avoid treating here [2, 4].

In Supporting Information S2, we provide several example functionals of
the form (2). Note that (2) describes only the spatial statistics of f ; if joint
statistics across multiple time points are required, we must re-define (2) and (3)
so that the test function φ depends on time. Supposing that f(r, t) is defined
for r ∈ V and t ≥ 0, we would have

Ψf [φ] =
〈

exp [−2πi(φ,f)]
〉
, (φ,f) =

∫ ∞

0

dt

∫
V

d3r φ(r, t)f(r, t).

The strategy outlined in this paper was to manipulate various random pro-
cesses to derive a scalar random quantity Y . We then demonstrated how the
statistics of Y (that is, the PDF of Y ) could be derived from the relevant char-
acteristic functionals. We will now describe how (2) can be used in general to
derive useful statistical information about f .

Extracting finite-dimensional statistical quantities

Given a random process f , the statistics of any finite-dimensional quantities
of interest can be obtained from (2). Immediately from the definition, we can
obtain the characteristic function of any scalar product of the form X = (φ,f),
where φ is a spatial test function, by noting that

ψX(ξ, t) =
〈

exp[−2πiξX]
〉
X

=
〈

exp[−2πiξ(φ,f)]
〉
f

= Ψf [ξφ, t]. (4)

The PDF of X can then be obtained by inverse Fourier transform of ψX(ξ).
Similarly, given any finite dimensional vector of scalar products, say X =
[(φ1,f), . . . , (φn,f)], we can obtain the characteristic function of X by

ψX(ξ, t) =
〈

exp[−2πiξTX]
〉

=
〈

exp

−2πi

n∑
j=1

ξj(φj ,f)

〉

=
〈

exp

−2πi(

n∑
j=1

ξjφj ,f)

〉

= Ψf

 n∑
j=1

ξjφj , t

 . (5)

The PDF of X can then be obtained by inverse Fourier transform of ψX(ξ, t).
A special case of (5) occurs when we take φj = δ(r−rj) for some collection of

sample points r1, . . . , rn. Then, (so long as Ψf is well-defined for such inputs),
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the characteristic function of X = [f(r1, t), . . . , f(rn, t)] would be given by

ψX(ξ, t) = Ψf

 n∑
j=1

ξjδ(r − rj), t


The statistics of nonlinear functionals of the process f can be obtained

from Ψf by similar but more involved procedures. For instance, suppose a
scalar Y is obtained by nonlinear transformation of a single scalar product,
i.e. Y = F [(φ,f)]. The PDF of Y can be obtained by first using (4) to
obtain the PDF of (φ,f), then the PDF of Y is obtained via the standard PDF
transformation law [4]. This can then be extended to the case where Y is a
function of several scalar products using (5), and then the general case where
Y = F [f ] is a general nonlinear functional can be treated by expanding f in an
orthonormal basis {ej} and writing Y = F̃ [(f , e1), (f , e2), . . .].

Joint and conditional characteristic functionals

Another strategy commonly employed in this paper was the usage of multi-
ple interacting processes and conditional characteristic functionals. Given two
random processes f and g, we can consider their joint characteristic functional:

Ψf ,g[φ1,φ2, t] =
〈

exp
[
− 2πi

(
(φ1,f) + (φ2, g)

)]〉
=
〈

exp [−2πi(φ1,f)] exp [−2πi(φ2, g)]
〉
. (6)

We say that f and g are independent if and only if (6) factors as the product (6)
= Ψf [φ1, t]Ψg[φ2, t]. Fixing a realization of one or the other of f or g results
in a conditional characteristic functional. For instance, fixing g, the conditional
characteristic functional of f |g is defined as

Ψf |g[φ, t] =
〈

exp[−2πi(φ,f)]
〉
f |g
. (7)

Note that (7) can be computed by first finding the joint PDF of the pair of
random variables X = (φ1,f) and Y = (φ2, g), e.g. via the joint characteristic
functional (6). Then, the conditional PDF for X|Y can be derived, and (7)
subsequently computed.

Given a conditional characteristic functional, we have the chain rule or law
of total expectation, which states that

Ψf [φ, t] =
〈

Ψf |g[φ, t]
〉
g

(8)

Expressions similar to (4) and (5) can then be derived for functionals of multiple
interacting random processes or conditional random processes by employing (6),
(7) and (8); for example, if Y = (f , g) is the scalar product of two random
processes, then the PDF of Y can be obtained by a combination of (8) and (3).
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Moment functions

Another convenient description of the statistics of a random process comes via
its moment functions. Given a process f , the PDF of f(r, t) is denoted pr,t(x)
(note that this is the PDF of the one-point sample values of f(r, t), not of the
entire process). We then define the mean function of f as

f̄ ≡ f̄(r, t) = 〈f(r, t)〉 =

∫
R
dx xpr,t(x)

Note that f̄(r, t) is a deterministic function: randomness has been ‘averaged
out’.

Now consider two samples, f(r1, t) and f(r2, t). If we compute their covari-
ance, we arrive at the covariance function:

kf (r1, r2, t) = Cov(f(r1, t), f(r2, t)) =
〈(
f(r1, t)− f̄(r1, t)

) (
f(r2, t)− f̄(r2, t)

)〉
The function kf describes the second order correlation structure of any random
process. For instance if kf (r1, r2, t) = 0, the values of the process at r1, r2 are
uncorrelated; if f̄ is constant and kf (r1, r2, t) ≡ kf (r1− r2, t), then the second
order statistics of f are shift-invariant and f is called is wide-sense stationary
[1, 4]. We note that while the study of f̄ and kf offers some useful insight into
the structure of random processes, higher-order (i.e. three-point, four-point and
so forth) correlation structures can be nontrivial, so in general we cannot assume
that a process is completely described by its mean and covariance function; only
the characteristic functional provides a complete description of f in general.

The moment functions of a random process can be recovered from the char-
acteristic functional by taking certain functional derivatives; see [3, 7].

Transformation under a linear operator

One of the key features of the characteristic functional is that it behaves very
favorably under linear transformation of realizations. Briefly, suppose that A is
a bounded linear operator with adjoint A† (recall that A† is the unique operator
such that

(
φ,Af

)
=
(
A†φ,f

)
for all pairs {φ,f}). Then, if we consider the

process g(r, t) = (Af)(r, t), it is easy to see from the definition of Ψf that

Ψg[φ, t] =
〈
exp

[
−2πi

(
φ,Af

)]〉
=
〈
exp

[
−2πi

(
A†φ,f

)]〉
= Ψf [A†φ, t] (9)
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