S2 Appendix: Example Random Process Models

In this supplement, we offer a small collection of random processes models
that are useful in modeling physiological and imaging systems, providing a func-
tional form for the characteristic functional whenever possible. We display some
numerical realizations, though we do not discuss simulation methods in depth;
see e.g. the extensive recent book [1]. Refer also to the introductory paper [2].

Recall that the spatial characteristic functional is defined as

(6,1 = (exp [~2mi(¢. F)] >f. (1)

By explicit functional form, we mean an expression which does not involve the
expectation angle brackets in (1). As mentioned in S1, one can modify (1)
to admit spatiotemporal test functions ¢ = ¢(r,t) by simply modifying the
definition of the scalar product (qb, f) to incorporate time.

Gaussian Processes

The class of Gaussian processes is the most commonly known. Its complete
statistical characterization relies on only the mean function f = f(r,t) and the
covariance function k = k(ry,72,t) (see S1). First, note that the covariance
function defines a covariance operator K;, which acts on a test function ¢ via

(K.)(r1) = / @1y k(r1, 7o, 0)(r)

1%

Given f and a valid k, f ~ GP(f, k) has characteristic functional [2, 3]
Ug[o(r),1] = exp [-27i (¢, f)] exp [-27* (K., §)] (2)
where

(o, f) Z/VdgT o(r)f(r,t), (Kio, ®) Z/Vd37"1/vd37“2 k(ri,r2,t)p(r2)d(r1)

One of the key features of a Gaussian process is that any finite dimensional sam-
ple is multivariate Gaussian. Indeed, let f ~ GP(f, k), n > 1,71,...,7, €V,
and ¢ > 0. Then the random vector X = [f(r1,t),..., f(r,,t)] has characteris-
tic function

Ux(€) =Wy |3 &olr =)t
= exp [* QWiZQ‘((S(T —75), _)]

xexp [ =217 Y && (Id(r —1;),0(r — i)

g k=1
=exp [—2mi&TX | exp [—271'2£TC£] (3)



where T indicates the transpose and

X(i) = f(rist), C(i,j) = k(ri, 1) (4)

Applying the inverse Fourier transform to (3), we obtain the PDF of X, ...

) n/2 _ .
px(x) = % exp <—;<X SO x- X)) (5)

The finite dimensional distributions (5) provide a simple method to draw
samples from GP(f, k): simply choose ¢ and sample locations ry,...,7, € V,
form X and C using (4), then use an existing multivariate Gaussian sampler
(based on e.g. Cholesky factorization) to draw from N(X,C). However, this
can be very inefficient if n is large, for instance sampling a fine grid of points in
3D: Cholesky factorization is O(n?) and matrix multiplication is O(n?), so to
draw K samples on a grid with m points per dimension, this method would be
O(m?) for the first sample, then O(Km5) thereafter. Faster specialized methods
are available if for instance k is shift-invariant; see e.g. [1].

In addition to the sample-based finite dimensional distributions (5), it is
also useful to have the density of scalar random variables of the sort Xy, =
(. f) = [, & ¢(r)f(r,t), i.e. a scalar product with a fixed test function.
Such a random variable has (univariate) PDF py ; given by

Pos(x) = ;exp <_(IW> (6)

where 04, = (KC;¢,¢) and mg, = (¢, f), with K and f respectively the
covariance operator and mean function of the process f. Note that as the mean
and covariance functions may depend on time, the PDF (6) also evolves in time.

One application of (2) is to provide a rigorous description of the Gaussian
white noise process w. While somewhat challenging to describe using standard
probabilistic definitions, the characteristic functional provides a direct method
to define a process which has mean zero and ‘independent standard normal
values at every point’. Intuitively, one would like the covariance function to be
zero for r1 # 7o, but nonzero for r1 = ra; the logical choice is a Dirac delta
covariance, that is, k(r1,7r2,t) = 6(r1 —r2). This leads to a covariance operator
)C which is the identity operator, and hence the characteristic functional [4]

ulg] = exp(-25%(9.9) = exp 202 [ v o))

A fairly wide variety of processes can be obtained under the Gaussian model
by choosing different mean and covariance functions. The only requirement on
f and k is that k be non-negative-type, which means that any matrix of the
form C(i,j) = k(ri,7;,t) must be symmetric and non-negative definite i.e. a
valid covariance matrix. Several common examples of covariance functions are
provided in Table 1. In Figure 1 we display realizations for several choices of k.



# | Name Covariance function k

(1) | Gaussian k(ri,r2;0,A) =c%exp (—3(r1 —r2) A(ry — 72))
(2) | Exponential k(ri,m2;0,0) = o exp(—||r1 — 72||/¢)

(3) | Matérn-Whittle | k(ry,72;0,v,0) = 2'/_??( ) (IIrlzrzll)uKV (“le_rz”)
(4) | Bessel k(ry,mo;0,v) = 0?T(d/2)gplmimrzl)

(5) | White noise k(ri,re) =d6(r1 — 7o)

Table 1: A short list of common covariance functions used in spatial random
process modeling, found in refs. [1, 5, 4, 6, 7]. The special functions I'(-), K, J,,
are respectively the Gamma function, modified Bessel function of the second
kind, and Bessel function of the first kind. The matrix A in (1) must be sym-
metric nonnegative definite. Covariances (2)-(4) are their isotropic versions;
anisotropic variants can also be defined. The covariance (5) must be interpreted
as the generalized kernel of an integral operator.

v=20=1/20

v=20=1/40

v=1,0=1/10

v=1,0=1/20

ai; = 50 ai;p = 500 aj;p = 100 aj;p = 1000
92 = 50 93 = 500 a99 = 2000 a9 = 100
a;p =az =0 a2 =az =0 a2 =az =0 a2 = az = 300

Figure 1: Simulated Gaussian random processes f(r,t) on V = [0, 1]2. Top row
uses the isotropic Matérn-Whittle covariance function (function (3) in Table
1) with parameters indicated above, while the bottom row uses the Gaussian
covariance (function (1) in Table 1) with A = (a,;) indicated above. All samples
use variance 02 = 1 and were computed using Algorithm 7.6 in [1].



Lognormal Processes

One undesirable feature of the Gaussian model for physiology applications is
that realizations are not guaranteed to be non-negative, whereas many physio-
logical processes necessarily are. Given z ~ GP(f, k), one possibility to easily
generate other random processes from z is to consider point transformations of
z, i.e. we generate a process f by simply applying a deterministic function T
to the realizations of z:

flrt,w) =T(z(r, t,w))

For the particular choice of T(z) = exp(z), we form the class of lognormal
processes, denoted LN (f, k), via

flrt,w) = exp(z(r,t,w)), z~GP(f k)

It is well-known that the characteristic function of a lognormal random variable
does not admit a closed-form representation [8], so similarly we cannot expect
that a lognormal random process will admit a closed-form representation for the
characteristic functional. In this work (namely S3), we were able to successfully
manipulate z = log f using (2), so this was a non-issue.

Poisson Point Processes

A very useful class of non-Gaussian random process models are the various point
processes. Realizations of a point process take the form

N
f(s) =2 d(s = 5;) (7)
i=1

where Sy, ...,95, is some collection of random states or sample points and N
is a possibly random number of samples. We will consider only spatiotemporal
Poisson point processes where S; = (R;,T;) denotes a random spatiotemporal
vector and the number of points N is a Poisson random variable. More general
point processes are also possible [9, 3, 10].

To define a spatiotemporal Poisson Point Process (PPP), we require only
an intensity function A(r,t), which is a non-negative, integrable function on
V x [0,00). We then define the mean number of points as

N = / / A(r,t) drdt < 0o
o Jv

To form a point process of the sort (7), we first sample N ~ Poi(N), where
Poi(N) is the Poisson distribution with rate N. Then, we consider random
variables (R1,Th1),..., (RN, Tn), independent and identically distributed with
probability density




Given a realization N = n and samples (Ry,T1) = (r1,t1),...,(Rn,Th) =
(7n, tn), we form the point process as in (7):

n

flrt) = 8(r =7yt —t;) (8)

Jj=1

Note that as (8) is a generalized function, one must take care in defining its
statistical properties. For instance, the finite dimensional point sample vectors
X = [f(r1,t),..., f(rn,t)] become meaningless. However, the finite dimen-
sional vectors X = [(¢¢, f), ..., (¢®,,, F)] and thus the characteristic functional
is still well-defined, because of their definition in terms of test functions. To
derive W¢[¢] (which is now a spatiotemporal characteristic functional; see S1),
we let ¢ = ¢(r,t) be a (Schwartz class, say) test function. Then,

1) =Z¢<RJ ;)

where N, {R;} and {7} are the random quantities discussed above. Thus

N

exp [—27m'(¢, f)] = H exp [—2mi¢(R;, T;)]

Jj=1

We then perform the expected value in (1) using the law of total probability
and the definition of the random vector (R;,Tj):

Uyslop] = <<6XP [—2i(o, f)] >{(Rj,Tj)}|N>N

_ <(/°° dt/vd3r exp(—2ﬂi¢(r,t))A(;t)>N>
N
_ Z q¢,ex§)\f - N)N"

= eXp(—N) exp(qe)

where we have defined ¢ = [, dt [i, d®r exp(—2mig(r,t))A(r,t). Recalling
the definition of N, we can simplify once more to obtain

U ¢[op] = exp {/000 dt/vd3r (exp(—2mig(r,t)) — 1) A(r, t)

We briefly discuss some extensions of the PPP model (8). First, we can
consider a filtered version of (8), whereby we compute g(r,t) = (Af)(r,t) where
A is a linear operator (defined for generalized functions). For instance, suppose



Figure 2: Simulation of three Poisson point processes with fixed PDF p(r,t) =
A(r,t)/N and varying N. In each panel, a single realization of f(r,t) is displayed
(white dots) over the color intensity plot of p(r,t). The mean number of points
N and the realized number of points n are displayed above each panel. The
PDF p(r,t) is a realization of a lumpy background process.

h(r,t) is a real, continuous, compactly supported function. Then, define g = Af
to be the convolution of f with h(r,t):

g(r,t) = (h* f)(r,1)
N Ry 3! W — 't — ¢t r — RSt — T
_/0 dt/de h(r — v/, t—t) Y 8(r' — R))O(t —Ty)

N .
:Zh(r—Rj,t—Tj) 9)

The characteristic functional of (9) then follows by the general relation for
linearly transformed random processes (discussed in S1), namely that ¥g[¢p] =
U [ATg]. With A = hx, we have A" = hx where h(r,t) = h(—7, —t), and so

U,(pp] = exp [/000 dt/vd?’r (exp(—Zm'(iL * @) (r,t)) — 1) )\(r,t)}

A particular example of (9) can be used to simulate extravascular drug diffusion
component c?ff (see S4 and the main text). Let h(r,t) be the fundamental
solution (Green’s function) of a constant-coeflicient diffusion equation, that is,

hrt) = ——exp (= [l
"7 (4nDot) /2 4Dt

then a solution to the diffusion equation with Poisson point process source s(r, t)
results in a generalized Lumpy background process of the type (9):

n N
' 1 o P
Cdef(rat): h("'_"",t—t'): exp <_—J
; ! ! Z (4mDo(t —t;))4/? 4Dy (t — t;)

J=1



Taking (9) as a starting point, one can construct a wide array of possible
random processes by choosing a different kernel functions h, or even allowing
multiple kernel functions h;(r,t) in the sum (9). In general, we call a random
process of the type

N

flrit) = hy(r,t;0;) (10)

=1

a generalized lumpy background process. The random variables that generate
(10) are N and (01, . ..,0y). The functions h;(r, t; @) need not be the same type
of function nor do they need to form a basis for any function space. Functions
similar to (10) have been called kernel density estimators and mixture models
[11], shot noise [10, 12], lumpy backgrounds [13, 14] and texton noise [15]. The
model (10) can be evaluated in parallel at very high speed, and h; can be
chosen to match observed texture statistics [15, 16] or display desired regularity,
nonnegativeness, boundedness, or any other desired sample function property.
In particular, (10) can be made highly non-stationary and non-Gaussian, making
it a particularly appealing class of models for physiological processes.

Figure 3: Three realizations of generalized lumpy background processes of the
form (10) on the unit square V = [0,1]2. On the left, each lump takes the
form hj(r) = Ajexp(—||r||?/207) with o} drawn randomly from a lognormal
distribution. In the middle, each lump takes the form h;(r) = Aexp(—r‘B;r/2)
where B; is a 2 x 2 positive definite matrix formed by rotating a matrix By
randomly. On the right is a clustered lumpy background [14] where each lump

is of the form h;(r) = 332, h(r — rji).

The second direction we can generalize either (7), (9) or (10) is to allow the
PPP intensity function A = A(r,t) to be a realization of a secondary random
process, that is, we suppose that A is a random process whose realizations are
(almost surely) nonnegative and integrable. Then, if for each realization of A
we form a Poisson point process, we call the resulting random process a doubly
stochastic or Cox Poisson point process [17, 9, 10], after which the filtered forms
(9) or (10) can be formed.
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