
S2 Appendix: Example Random Process Models

In this supplement, we offer a small collection of random processes models
that are useful in modeling physiological and imaging systems, providing a func-
tional form for the characteristic functional whenever possible. We display some
numerical realizations, though we do not discuss simulation methods in depth;
see e.g. the extensive recent book [1]. Refer also to the introductory paper [2].

Recall that the spatial characteristic functional is defined as

Ψf [φ, t] =
〈

exp
[
−2πi

(
φ,f

)] 〉
f
. (1)

By explicit functional form, we mean an expression which does not involve the
expectation angle brackets in (1). As mentioned in S1, one can modify (1)
to admit spatiotemporal test functions φ ≡ φ(r, t) by simply modifying the
definition of the scalar product

(
φ,f

)
to incorporate time.

Gaussian Processes

The class of Gaussian processes is the most commonly known. Its complete
statistical characterization relies on only the mean function f̄ = f̄(r, t) and the
covariance function k = k(r1, r2, t) (see S1). First, note that the covariance
function defines a covariance operator Kt, which acts on a test function φ via

(Ktφ)(r1) =

∫
V

d3r2 k(r1, r2, t)φ(r2)

Given f̄ and a valid k, f ∼ GP(f̄ ,k) has characteristic functional [2, 3]

Ψf [φ(r), t] = exp
[
−2πi

(
φ, f̄

)]
exp

[
−2π2

(
Ktφ,φ

)]
(2)

where(
φ, f̄

)
=

∫
V

d3r φ(r)f̄(r, t),
(
Ktφ,φ

)
=

∫
V

d3r1

∫
V

d3r2 k(r1, r2, t)φ(r2)φ(r1)

One of the key features of a Gaussian process is that any finite dimensional sam-
ple is multivariate Gaussian. Indeed, let f ∼ GP(f̄ ,k), n ≥ 1, r1, . . . , rn ∈ V ,
and t ≥ 0. Then the random vector X = [f(r1, t), . . . , f(rn, t)] has characteris-
tic function

ψX(ξ) =Ψf

 n∑
j=1

ξjδ(r − rj), t


= exp

[
− 2πi

n∑
j=1

ξj(δ(r − rj), f̄)
]

× exp

−2π2
n∑

j,k=1

ξjξk (Ktδ(r − rj), δ(r − rk))


= exp

[
−2πiξᵀX

]
exp

[
−2π2ξᵀCξ

]
(3)
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where ᵀ indicates the transpose and

X(i) = f̄(ri, t), C(i, j) = k(ri, rj , t). (4)

Applying the inverse Fourier transform to (3), we obtain the PDF of Xr1:rn,t:

pX(x) =
(2π)−n/2√

det(C)
exp

(
−1

2
(x−X)ᵀC−1(x−X)

)
(5)

The finite dimensional distributions (5) provide a simple method to draw
samples from GP(f̄ ,k): simply choose t and sample locations r1, . . . , rn ∈ V ,
form X and C using (4), then use an existing multivariate Gaussian sampler
(based on e.g. Cholesky factorization) to draw from N (X,C). However, this
can be very inefficient if n is large, for instance sampling a fine grid of points in
3D: Cholesky factorization is O(n3) and matrix multiplication is O(n2), so to
draw K samples on a grid with m points per dimension, this method would be
O(m9) for the first sample, then O(Km6) thereafter. Faster specialized methods
are available if for instance k is shift-invariant; see e.g. [1].

In addition to the sample-based finite dimensional distributions (5), it is
also useful to have the density of scalar random variables of the sort Xφ,t =
(φ,f) =

∫
V
d3r φ(r)f(r, t), i.e. a scalar product with a fixed test function.

Such a random variable has (univariate) PDF pφ,t given by

pφ,t(x) =
1√

2πσ2
φ,t

exp

(
− (x−mφ,t)2

2σ2
φ,t

)
(6)

where σφ,t = (Ktφ,φ) and mφ,t = (φ, f̄), with K and f̄ respectively the
covariance operator and mean function of the process f . Note that as the mean
and covariance functions may depend on time, the PDF (6) also evolves in time.

One application of (2) is to provide a rigorous description of the Gaussian
white noise process w. While somewhat challenging to describe using standard
probabilistic definitions, the characteristic functional provides a direct method
to define a process which has mean zero and ‘independent standard normal
values at every point’. Intuitively, one would like the covariance function to be
zero for r1 6= r2, but nonzero for r1 = r2; the logical choice is a Dirac delta
covariance, that is, k(r1, r2, t) = δ(r1−r2). This leads to a covariance operator
K which is the identity operator, and hence the characteristic functional [4]

Ψw[φ] = exp(−2π2(φ,φ)) = exp

(
−2π2

∫
V

d3r |φ(r)|2
)

A fairly wide variety of processes can be obtained under the Gaussian model
by choosing different mean and covariance functions. The only requirement on
f̄ and k is that k be non-negative-type, which means that any matrix of the
form C(i, j) = k(ri, rj , t) must be symmetric and non-negative definite i.e. a
valid covariance matrix. Several common examples of covariance functions are
provided in Table 1. In Figure 1 we display realizations for several choices of k.
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# Name Covariance function k

(1) Gaussian k(r1, r2;σ,A) = σ2 exp
(
− 1

2 (r1 − r2)tA(r1 − r2)
)

(2) Exponential k(r1, r2;σ, `) = σ2 exp(−‖r1 − r2‖/`)

(3) Matérn-Whittle k(r1, r2;σ, ν, `) = σ2

2ν−1Γ(ν)

(
‖r1−r2‖

`

)ν
Kν

(
‖r1−r2‖

`

)
(4) Bessel k(r1, r2;σ, ν) = σ2Γ(d/2) Jν(‖r1−r2‖)

(‖r1−r2‖/2)ν

(5) White noise k(r1, r2) = δ(r1 − r2)

Table 1: A short list of common covariance functions used in spatial random
process modeling, found in refs. [1, 5, 4, 6, 7]. The special functions Γ(·),Kν , Jν
are respectively the Gamma function, modified Bessel function of the second
kind, and Bessel function of the first kind. The matrix A in (1) must be sym-
metric nonnegative definite. Covariances (2)-(4) are their isotropic versions;
anisotropic variants can also be defined. The covariance (5) must be interpreted
as the generalized kernel of an integral operator.

Figure 1: Simulated Gaussian random processes f(r, t) on V = [0, 1]2. Top row
uses the isotropic Matérn-Whittle covariance function (function (3) in Table
1) with parameters indicated above, while the bottom row uses the Gaussian
covariance (function (1) in Table 1) with A = (aij) indicated above. All samples
use variance σ2 = 1 and were computed using Algorithm 7.6 in [1].
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Lognormal Processes

One undesirable feature of the Gaussian model for physiology applications is
that realizations are not guaranteed to be non-negative, whereas many physio-
logical processes necessarily are. Given z ∼ GP(f̄ ,k), one possibility to easily
generate other random processes from z is to consider point transformations of
z, i.e. we generate a process f by simply applying a deterministic function Υ
to the realizations of z:

f(r, t, ω) = Υ(z(r, t, ω))

For the particular choice of Υ(z) = exp(z), we form the class of lognormal
processes, denoted LN (f̄ ,k), via

f(r, t, ω) = exp(z(r, t, ω)), z ∼ GP(f̄ ,k)

It is well-known that the characteristic function of a lognormal random variable
does not admit a closed-form representation [8], so similarly we cannot expect
that a lognormal random process will admit a closed-form representation for the
characteristic functional. In this work (namely S3), we were able to successfully
manipulate z = log f using (2), so this was a non-issue.

Poisson Point Processes

A very useful class of non-Gaussian random process models are the various point
processes. Realizations of a point process take the form

f(s) =

N∑
j=1

δ(s− Sj) (7)

where S1, . . . , Sn is some collection of random states or sample points and N
is a possibly random number of samples. We will consider only spatiotemporal
Poisson point processes where Sj = (Rj , Tj) denotes a random spatiotemporal
vector and the number of points N is a Poisson random variable. More general
point processes are also possible [9, 3, 10].

To define a spatiotemporal Poisson Point Process (PPP), we require only
an intensity function λ(r, t), which is a non-negative, integrable function on
V × [0,∞). We then define the mean number of points as

N =

∫ ∞
0

∫
V

λ(r, t) d3rdt <∞

To form a point process of the sort (7), we first sample N ∼ Poi(N), where
Poi(N) is the Poisson distribution with rate N . Then, we consider random
variables (R1, T1), . . . , (RN , TN ), independent and identically distributed with
probability density

p(r, t) =
λ(r, t)

N
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Given a realization N = n and samples (R1, T1) = (r1, t1), . . . , (Rn, Tn) =
(rn, tn), we form the point process as in (7):

f(r, t) =

n∑
j=1

δ(r − rj)δ(t− tj) (8)

Note that as (8) is a generalized function, one must take care in defining its
statistical properties. For instance, the finite dimensional point sample vectors
X = [f(r1, t), . . . , f(rn, t)] become meaningless. However, the finite dimen-
sional vectors X = [(φ1,f), . . . , (φn,f)] and thus the characteristic functional
is still well-defined, because of their definition in terms of test functions. To
derive Ψf [φ] (which is now a spatiotemporal characteristic functional; see S1),
we let φ ≡ φ(r, t) be a (Schwartz class, say) test function. Then,

(
φ,f

)
=

N∑
j=1

φ(Rj , Tj)

where N, {Rj} and {Tj} are the random quantities discussed above. Thus

exp
[
−2πi

(
φ,f

)]
=

N∏
j=1

exp [−2πiφ(Rj , Tj)]

We then perform the expected value in (1) using the law of total probability
and the definition of the random vector (Rj , Tj):

Ψf [φ] =

〈〈
exp

[
−2πi

(
φ,f

)] 〉
{(Rj ,Tj)}|N

〉
N

=

〈(∫ ∞
0

dt

∫
V

d3r exp(−2πiφ(r, t))
λ(r, t)

N

)N〉
N

=

∞∑
n=0

qnφ exp(−N)N
n

N
n
n!

= exp(−N) exp(qφ)

where we have defined qφ ≡
∫∞

0
dt
∫
V
d3r exp(−2πiφ(r, t))λ(r, t). Recalling

the definition of N , we can simplify once more to obtain

Ψf [φ] = exp

[∫ ∞
0

dt

∫
V

d3r (exp(−2πiφ(r, t))− 1)λ(r, t)

]
We briefly discuss some extensions of the PPP model (8). First, we can

consider a filtered version of (8), whereby we compute g(r, t) = (Af)(r, t) where
A is a linear operator (defined for generalized functions). For instance, suppose
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Figure 2: Simulation of three Poisson point processes with fixed PDF p(r, t) =
λ(r, t)/N̄ and varying N̄ . In each panel, a single realization of f(r, t) is displayed
(white dots) over the color intensity plot of p(r, t). The mean number of points
N̄ and the realized number of points n are displayed above each panel. The
PDF p(r, t) is a realization of a lumpy background process.

h(r, t) is a real, continuous, compactly supported function. Then, define g = Af
to be the convolution of f with h(r, t):

g(r, t) = (h ∗ f)(r, t)

=

∫ ∞
0

dt′
∫
R3

d3r′ h(r − r′, t− t′)
N∑
j=1

δ(r′ −Rj)δ(t
′ − Tj)

=

N∑
j=1

h(r −Rj , t− Tj) (9)

The characteristic functional of (9) then follows by the general relation for
linearly transformed random processes (discussed in S1), namely that Ψg[φ] =

Ψf [A†φ]. With A = h∗, we have A† = h̃∗ where h̃(r, t) = h(−r,−t), and so

Ψg[φ] = exp

[∫ ∞
0

dt

∫
V

d3r
(

exp(−2πi(h̃ ∗ φ)(r, t))− 1
)
λ(r, t)

]
A particular example of (9) can be used to simulate extravascular drug diffusion
component cdiff (see S4 and the main text). Let h(r, t) be the fundamental
solution (Green’s function) of a constant-coefficient diffusion equation, that is,

h(r, t) =
1

(4πD0t)d/2
exp

(
−‖r‖

2

4D0t

)
then a solution to the diffusion equation with Poisson point process source s(r, t)
results in a generalized Lumpy background process of the type (9):

cdiff (r, t) =

n∑
j=1

h(r − rj , t− tj) =

N∑
j=1

1

(4πD0(t− tj))d/2
exp

(
− ‖r − rj‖

2

4D0(t− tj)

)
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Taking (9) as a starting point, one can construct a wide array of possible
random processes by choosing a different kernel functions h, or even allowing
multiple kernel functions hj(r, t) in the sum (9). In general, we call a random
process of the type

f(r, t) =

N∑
j=1

hj(r, t;θj) (10)

a generalized lumpy background process. The random variables that generate
(10) are N and (θ1, . . . ,θN ). The functions hj(r, t;θ) need not be the same type
of function nor do they need to form a basis for any function space. Functions
similar to (10) have been called kernel density estimators and mixture models
[11], shot noise [10, 12], lumpy backgrounds [13, 14] and texton noise [15]. The
model (10) can be evaluated in parallel at very high speed, and hj can be
chosen to match observed texture statistics [15, 16] or display desired regularity,
nonnegativeness, boundedness, or any other desired sample function property.
In particular, (10) can be made highly non-stationary and non-Gaussian, making
it a particularly appealing class of models for physiological processes.

Figure 3: Three realizations of generalized lumpy background processes of the
form (10) on the unit square V = [0, 1]2. On the left, each lump takes the
form hj(r) = Aj exp(−‖r‖2/2σ2

j ) with σ2
j drawn randomly from a lognormal

distribution. In the middle, each lump takes the form hj(r) = A exp(−rtBjr/2)
where Bj is a 2 × 2 positive definite matrix formed by rotating a matrix B0

randomly. On the right is a clustered lumpy background [14] where each lump
is of the form hj(r) =

∑nj
k=1 h(r − rjk).

The second direction we can generalize either (7), (9) or (10) is to allow the
PPP intensity function λ ≡ λ(r, t) to be a realization of a secondary random
process, that is, we suppose that λ is a random process whose realizations are
(almost surely) nonnegative and integrable. Then, if for each realization of λ
we form a Poisson point process, we call the resulting random process a doubly
stochastic or Cox Poisson point process [17, 9, 10], after which the filtered forms
(9) or (10) can be formed.
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