
S3 Appendix: Gompertzian tumor growth as a
random process

For tumor growth in the absence of a chemotherapy drug, c(r, t) = 0 and
the equation for Gompetzian growth can be manipulated into the form

d

dt
lnn(r, t) = γ(r)− µ(r) lnn(r, t) (1)

where γ(r), defined as µ(r) lnnmax(r), is a time-independent random process.
To maintain consistency with the Gompertzian model, we assume also that γ(r)
is statistically independent of n(r, t), since otherwise the statistics of the Gom-
pertzian parameters µ(r) and nmax(r) would have to depend on time. We also
assume that the initial condition for (1) is given by a spatial random process
n0(r) ≡ n(r, 0), independent from µ and γ.

For fixed r, (1) is an ordinary first-order differential equation in t; the solu-
tion is

lnn(r, t) = lnn0(r) exp(−tµ(r)) +
γ(r)

µ(r)
[1− exp(−tµ(r))] , (2)

or equivalently,

lnn(r, t) = lnn0(r) exp(−tµ(r)) + lnnmax(r) [1− exp(−tµ(r))] . (3)

To get a more familiar form for Gompertzian growth, we can exponentiate both
sides of (3) and perform some algebra, yielding

n(r, t) = n0(r) exp

[
ln

(
nmax(r)

n0(r)

)
[1− exp(−tµ(r))]

]
. (4)

For comparison, the usual Gompertzian growth formula is

N(t) = N0 exp

[
ln

(
Nmax
N0

)
[1− exp(−tµ)]

]
. (5)

Note that we can derive (5) from (4) only by ignoring the dependences on spatial
position r, not by averaging over the volume of the tumor. We must implicitly
assume that there is no spatial heterogeneity in the density of tumor cells or
the growth parameters if we want to use just N(t).

To describe this heterogeneity statistically, we need characteristic function-
als. We have the option to compute the characteristic functional for either
n(r, t) or lnn(r, t); the latter is easier to compute and more relevant to tumor
therapy.

In the vector-space notation introduced in S1, the characteristic functional
for lnn(r, t) is defined by

Ψlnn[φ, t] ≡
〈

exp [−2πi(φ, lnn)]
〉
lnn

, (6)
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where the time dependence is implicit in lnn and (φ, lnn) =
∫
V
d3r φ(r) lnn(r)

is the scalar product of φ and lnn.
We see from (3) that the random process lnn depends on three other random

processes: lnn0(r), lnnmax(r) and µ(r), or in vector-space function notation,
lnn = F (lnn0, lnnmax,µ). Therefore, we can write

Ψlnn[φ, t] ≡
〈

exp[−2πi(φ, lnn)]
〉
lnn0,lnnmax,µ

=
〈〈〈

exp [−2πi(φ, lnn)]
〉
lnn0| lnnmax,µ

〉
lnnmax|µ

〉
µ
. (7)

With (3) and the assumption from above that lnn0 and lnnmax are statistically
independent, we can write this characteristic functional as

Ψlnn[φ, t] =
〈〈

exp
[
−2πi

(
φ, lnn0 exp(−tµ)

)]〉
lnn0

×
〈

exp
[
−2πi

(
φ, lnnmax[1− exp(−tµ)]

)]〉
lnnmax|µ

〉
µ
. (8)

In this expression, lnn0 exp(−tµ) is to be interpreted as the function lnn0(r) exp[−tµ(r)].
Thus the scalar product

(
φ, lnn0 exp(−tµ)

)
can be written as

(
φ exp(−tµ), lnn0

)
simply by associating the exponential factor with φ(r) rather than lnn0(r).
With a similar manipulation on the second factor in (8), we see that

Ψlnn[φ, t] =
〈

Ψlnn|µ[φ, t]
〉
µ

=
〈

Ψlnn0
[φ exp(−tµ)] ·Ψlnnmax|µ

[
φ
(
1− exp(−tµ)

)] 〉
µ
. (9)

There is considerable evidence in the literature [1, 2] that the density of
tumor cells is a lognormal random process, so we will now assume that the
logarithm of the initial density, lnn0(r), is a normal random process (see S2).

With the characteristic functional for a normal random process (see S2), we
can write

Ψlnn0 [φ exp(−tµ)] = exp[− 2πi(φ, lnn0 exp(−tµ)]

× exp[−2π2(φ, exp(−tµ)Klnn0
exp(−tµ)φ)] . (10)

Because of the decaying exponential factors here, the characteristic functional
of lnn quickly loses its memory of the initial distribution lnn0 as t increases.
The remaining heterogeneity results from the randomness in lnnmax and µ.

There is no direct information in the literature on the characteristic function-
als of the Gompertzian parameters nmax and µ because they have not previously
been treated as random processes, but nmax should reflect tumor vascularity,
which is often assumed to be lognormal. With that assumption, lnnmax is a
normal random process, and we see that [cf. (10)]

Ψlnnmax|µ
[
φ
(
1− exp(−tµ)

)]
(11)

= exp
[
− 2πi

(
φ, lnnmax[1− exp(−tµ)])

)]
× exp

[
− 2π2

(
φ, [1− exp(−tµ)]Klnnmax

[1− exp(−tµ)]φ
)]
. (12)
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It follows from the above that the conditional characteristic functional Ψlnn|µ(φ, t),
defined by (9), is also normal, and the conditional mean vector and covariance
operator are given by

lnn(µ) ≡ 〈lnn〉lnn0,lnnmax|µ = lnn0 exp(−tµ) + lnnmax [1− exp(−tµ)] (13)

Klnn|µ = exp(−tµ)Klnn0
exp(−tµ)+[1−exp(−tµ)]Klnnmax

[1−exp(−tµ)] (14)

It would be difficult to perform the remaining expectation over the growth rate
µ to go from Ψlnn|µ(φ, t) to Ψlnn(φ, t) even if the characteristic functional for
µ were known, but there are two limits where that step is not necessary. As
t → ∞, exp(−tµ) → 0 and [1 − exp(−tµ)] → 1; and if t → 0, exp(−tµ) → 1
and [1− exp(−tµ)]→ 0. In both cases µ disappears, so Ψlnn(φ, 0) = Ψlnn0

(φ)
and Ψlnn(φ,∞) = Ψlnnmax

(φ).
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