Skip to main content
Advertisement

< Back to Article

Dimerization of Hepatitis E Virus Capsid Protein E2s Domain Is Essential for Virus–Host Interaction

Figure 7

Mutational studies on the groove region.

(A) The schematic representation of wild-type E2 and nine point mutations targeting the solvent-accessible residues near the groove region. (B) The wild type E2 and its mutants were subjected to non-reducing SDS-PAGE and Western Blotting with the HEV-neutralizing antibody 8C11 or 8H3. In this figure the lanes with H indicate samples in the reduced condition (i.e. these samples were heated up to 100°C for 3 minutes). These samples were mainly resolved as monomers. The lanes with N indicate samples in the non-reducing condition (i.e. these samples with 0.1% SDS, no BME and were not heated). These samples were resolved mainly as dimers. All nine mutants remained as dimers. Western Blotting showed that the dimeric E2 wild type and eight mutants were reactive with mAb 8C11. Of these, only E479A, Y485A, I529A, K534A and D496A abolished the 8H3 reactivity. Interestingly, mutant D496A abolished the HEV neutralizing antibodies 8C11 and 8H3 reactivity while maintaining the dimeric arrangement.

Figure 7

doi: https://doi.org/10.1371/journal.ppat.1000537.g007