Skip to main content
Advertisement

< Back to Article

acal is a Long Non-coding RNA in JNK Signaling in Epithelial Shape Changes during Drosophila Dorsal Closure

Figure 2

acal expression is required in the lateral epidermis during DC.

(A) acal expression in wild type and mutant embryos during DC stages, as determined by qPCR. Means of three independent experiments run twice, +/− SEM. Student’s t test was used to assess significance. (B) Targeted ectodermal (69B-gal 4 driver) and lateral epidermis (pnr-gal 4 driver) expression of wild type acal in acal mutants. Only dead embryos are classified, mutants surviving embryogenesis constitute the remaining percentage to amount to a hundred percent (open space above bars). (B’-B’’’) are examples of acal5/5; 69B>acal embryos with no cuticular phenotype, wild type in appearance (B’), with a dorsal open phenotype (B’’), or with an anterior open phenotype (B’’’). Compared with acal5/5 mutants, the cuticular phenotypes are the same, but they differ significantly in the abundance (expression of acal significantly reduces the number of mutant embryos that die and that have cuticular phenotypes). In these and following experiments, cuticular phenotypes do not change, unless otherwise stated. No new cuticular phenotypes are found; thus, examples are not depicted in all figures. Numbers analyzed: acal5/5,UAS-acal/+ = 240, acal5/5;69B-gal4/+ = 441, acal5/5;69B>acal = 237, acal5/5;pnr-gal4/+ = 435, acal5/5;pnr>acal = 130. Statistical significance was calculated using chi square tests. (C) Quantification of in situ hybridization shown in (D) in stage 13 embryos (acal5/5, n = 10; yw, n = 6). acal mutants have significantly lower expression levels in lateral epithelia; chi square test. (D) acal in situ hybridization in embryos throughout embryonic development. Wild type embryos are yw, and mutant is acal5/5. Arrows indicate expression in the lateral epidermis and arrowheads point to expression in the central nervous system. Sense (negative) controls are also shown. Insets show boxed areas in stages 13, 15, and 17 embryos. See also S2 Fig.

Figure 2

doi: https://doi.org/10.1371/journal.pgen.1004927.g002