acal is a Long Non-coding RNA in JNK Signaling in Epithelial Shape Changes during Drosophila Dorsal Closure
Figure 4
Ectopic JNK signaling activation in acal mutants.
(A) TRE-DsRed works as an AP-1 responsive element driving expression of DsRed. (B–B’’) Wild type embryos, (C–D’’) acal2 mutants. sGMCA is a marker for cortical cytoskeleton (green in B, C, and D). (B–D) Images are representative of five embryos per condition. (D–D’’) Boxed area in C. Ectopic TRE-DsRed activity is shown (arrowheads). Scale bars in (B, C, and D) are 50 μm. (E) Mean fluorescence intensity +/− SEM of sGMCA and TRE-DsRed in acal5 mutants and in control embryos. Leading edge region is highlighted in gray. n = 5 for each condition. For both channels, distributions are significantly different (Kolmogorov-Smirnov test, asterisk and bar depicting significant ectopic JNK activation in lateral epithelia ventral to the LE, p<0.001). (F-H) puclacZ staining of control (F) and mutant (G) embryos. Arrowheads in (G) mark ectopic puclacZ activation. (H) Quantification of acal mutant phenotypes using puclacZ heterozygosity as JNK signaling reporter and genetic sensitized background. Mutant embryos were selected by lack of eve-lacZ staining, present in balancer chromosomes. Number of embryos analyzed: acal+/+;puclacZ/+ = 108, acal1/1;puclacZ/+ = 229, acal2/2;puclacZ/+ = 48, acal5/5;puclacZ/+ = 62. See also S4 Fig. (I) Genetic interaction between bsk1 and acal5 mutants. Only the dead embryos are classified, the mutants surviving embryogenesis are the remaining percentage to amount to a hundred percent (open space above bars). Number of animals analyzed: bsk1/1;acal+/+ = 154, bsk1/1;acal5/+ = 210, bsk+/+;acal5/5 = 391, bsk1/+;acal5/5 = 166. Significance in (H-I) was calculated using chi square tests.