Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Early neonatal outcomes of very-low-birth-weight infants in Turkey: A prospective multicenter study of the Turkish Neonatal Society

  • Esin Koc,

    Roles Conceptualization, Formal analysis, Funding acquisition, Methodology, Supervision

    Affiliation Department of Neonatology, Gazi University Faculty of Medicine, Ankara,Turkey

  • Nihal Demirel,

    Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Writing – original draft

    Affiliation Department of Neonatology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey

  • Ahmet Yagmur Bas,

    Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Project administration, Visualization, Writing – original draft

    Affiliation Department of Neonatology, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey

  • Dilek Ulubas Isik ,

    Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft

    dilekulubas@yahoo.com

    Affiliation Department of Neonatology, Etlik Zubeyde Hanim Women’s Health Teaching and Research Hospital, University of Health Sciences, Ankara, Turkey

  • Ibrahim Murat Hirfanoglu,

    Roles Data curation

    Affiliation Department of Neonatology, Gazi University Faculty of Medicine, Ankara,Turkey

  • Turan Tunc,

    Roles Data curation

    Affiliation Neonatology Division, Memorial Hospital, Istanbul, Turkey

  • Fatma Nur Sari,

    Roles Data curation

    Affiliation Department of Neonatology Dr Zekai Tahir Burak Women’s Health Education and Research Hospital, University of Health Sciences, Ankara, Turkey

  • Guner Karatekin,

    Roles Data curation

    Affiliation Department of Neonatology, Zeynep Kamil Maternity and Children’s Training and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Ramazan Ozdemir,

    Roles Data curation

    Affiliation Department of Neonatology, Inonu University, Faculty of Medicine, Malatya, Turkey

  • Huseyin Altunhan,

    Roles Data curation, Methodology

    Affiliation Department of Neonatology, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey

  • Merih Cetinkaya,

    Roles Data curation

    Affiliation Department of Neonatology, Kanuni Sultan Suleyman Training and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Beyza Ozcan,

    Roles Data curation

    Affiliation Department of Neonatology, Konya Education and Research Hospital, University of Health Sciences, Konya, Turkey

  • Servet Ozkiraz,

    Roles Data curation

    Affiliation Neonatology Division, Medicalpark Hospital, Gaziantep, Turkey

  • Sebnem Calkavur,

    Roles Data curation

    Affiliation Department of Neonatology, Dr Behcet Uz Children’s Hospital, University of Health Sciences, Izmir, Turkey

  • Kadir Serafettin Tekgunduz,

    Roles Data curation

    Affiliation Department of Neonatology, Ataturk University, Faculty of Medicine, Erzurum, Turkey

  • Ayhan Tastekin,

    Roles Data curation

    Affiliation Department of Neonatology, Medipol University, Faculty of Medicine, Istanbul, Turkey

  • Ferda Ozlu,

    Roles Data curation

    Affiliation Department of Neonatology, Cukurova University, Faculty of Medicine, Adana, Turkey

  • Banu Mutlu Ozyurt,

    Roles Data curation

    Affiliation Neonatology Division, Mersin State Hospital, Mersin, Turkey

  • Ahmet Ozdemir,

    Roles Data curation

    Affiliation Department of Neonatology, Erciyes University, Faculty of Medicine, Kayseri, Turkey

  • Bilin Cetinkaya,

    Roles Data curation

    Affiliation Department of Neonatology, Baskent University, Faculty of Medicine, Adana, Turkey

  • Yasar Demirelli,

    Roles Data curation

    Affiliation Department of Neonatology, Erzurum Nenehatun Maternity Hospital, Erzurum, Turkey

  • Esad Koklu,

    Roles Data curation

    Affiliation Neonatology Division, Megapark Hospital, Kahramanmaras, Turkey

  • Ulker Celik,

    Roles Data curation

    Affiliation Neonatology Division, Denizli State Hospital, Denizli, Turkey

  • Nuriye Tarakci,

    Roles Data curation

    Affiliation Department of Neonatology, Dr. Faruk Sukan Maternity and Children's Hospital, Konya, Turkey

  • Didem Armangil,

    Roles Data curation

    Affiliation Department of Neonatology, Yuksek Ihtisas University, Faculty of Medicine, Ankara, Turkey

  • Emel Okulu,

    Roles Data curation

    Affiliation Department of Neonatology, Ankara University Faculty of Medicine, Ankara, Turkey

  • Fatma Narter,

    Roles Data curation

    Affiliation Department of Neonatology, Kartal Lutfi Kirdar Education and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Birgul Mutlu,

    Roles Data curation

    Affiliation Neonatology Division, Doruk Private Hospital, Bursa, Turkey

  • Mustafa Kurthan Mert,

    Roles Data curation

    Affiliation Department of Neonatology, Numune Training and Education Hospital, University of Health Sciences, Adana, Turkey

  • Ali Bulbul,

    Roles Data curation

    Affiliation Department of Neonatology, Sisli Hamidiye Etfal Education and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Huseyin Selim Asker,

    Roles Data curation

    Affiliation Neonatology Division, NCR International Hospital, Gaziantep, Turkey

  • Ozgun Uygur,

    Roles Data curation

    Affiliation Department of Neonatology, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey

  • Ilker Sait Uslu,

    Roles Data curation

    Affiliation Department of Neonatology, Ondokuz Mayıs University, Faculty of Medicine, Samsun, Turkey

  • Sabahattin Ertugrul,

    Roles Data curation

    Affiliation Department of Neonatology, Dicle University Faculty of Medicine, Diyarbakır, Turkey

  • Cumhur Aydemir,

    Roles Data curation

    Affiliation Department of Neonatology, Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey

  • Hasan Tolga Celik,

    Roles Data curation

    Affiliation Department of Neonatology, Hacettepe University Faculty of Medicine, Ankara, Turkey

  • Kazim Kucuktasci,

    Roles Data curation

    Affiliation Neonatology Division, Denizli Saglik Hospital, Denizli, Turkey

  • Selda Arslan,

    Roles Data curation

    Affiliation Department of Neonatology, Mustafa Kemal University Faculty of Medicine, Hatay, Turkey

  • Hacer Ergin,

    Roles Data curation

    Affiliation Department of Neonatology, Pamukkale University Faculty of Medicine, Denizli, Turkey

  • Aysegul Zenciroglu,

    Roles Data curation

    Affiliation Department of Neonatology, Dr Sami Ulus Maternity and Children’s Hospital, University of Health Sciences, Ankara, Turkey

  • Sadik Yurttutan,

    Roles Data curation

    Affiliation Department of Neonatology, Kahramanmaras Sutcu Imam University, Faculty of Medicine, Kahramanmaras, Turkey

  • Aysen Orman,

    Roles Data curation

    Affiliation Department of Neonatology, Fırat University, Faculty of Medicine, Elazig, Turkey

  • Oguz Tuncer,

    Roles Data curation

    Affiliation Department of Neonatology, Yuzuncu Yil University, Faculty of Medicine, Van, Turkey

  • Beril Yasa,

    Roles Data curation

    Affiliation Department of Neonatology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey

  • Betul Acunas,

    Roles Data curation

    Affiliation Department of Neonatology, Trakya University Faculty of Medicine, Edirne, Turkey

  • Sahin Takci,

    Roles Data curation

    Affiliation Department of Neonatology, Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey

  • Zeynel Gokmen,

    Roles Data curation

    Affiliation Department of Neonatology, Baskent University, Faculty of Medicine, Konya, Turkey

  • Hilal Ozkan,

    Roles Data curation

    Affiliation Department of Neonatology, Uludag University, Faculty of Medicine, Bursa, Turkey

  • Serdar Comert,

    Roles Data curation

    Affiliation Department of Neonatology, Suleymaniye Maternity, Research & Training Hospital, University of Health Sciences, Istanbul, Turkey

  • Nuran Ustun,

    Roles Data curation

    Affiliation Department of Neonatology, Medeniyet University, Faculty of Medicine, Istanbul, Turkey

  • Mehmet Mutlu,

    Roles Data curation

    Affiliation Department of Neonatology, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey

  • Bilge Tanyeri Bayraktar,

    Roles Data curation

    Affiliation Department of Neonatology, Bezmialem University, Faculty of Medicine, Istanbul, Turkey

  • Leyla Bilgin,

    Roles Data curation

    Affiliation Department of Neonatology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Funda Tuzun,

    Roles Data curation

    Affiliation Department of Neonatology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey

  • Ozge Aydemir,

    Roles Data curation

    Affiliation Department of Neonatology, Osmangazi University Faculty of Medicine, Eskisehir, Turkey

  • Tugba Gursoy,

    Roles Data curation

    Affiliation Department of Neonatology, Koc University, Faculty of Medicine, Istanbul, Turkey

  • Arzu Akdag,

    Roles Data curation

    Affiliation Department of Neonatology, Bursa Dortcelik Children's Hospital, Bursa, Turkey

  • Asli Memisoglu,

    Roles Data curation

    Affiliation Department of Neonatology, Marmara University, Faculty of Medicine, Istanbul, Turkey

  • Emrah Can,

    Roles Data curation

    Affiliation Department of Neonatology, Bagcilar Education and Research Hospital, University of Health Sciences, Istanbul, Turkey

  • Demet Terek,

    Roles Data curation

    Affiliation Department of Neonatology, Ege University, Faculty of Medicine, Izmir, Turkey

  • Serdar Beken,

    Roles Data curation

    Affiliation Department of Neonatology, Acıbadem University, Faculty of Medicine, Istanbul, Turkey

  • Ozden Turan,

    Roles Data curation

    Affiliation Department of Neonatology, Baskent University, Faculty of Medicine, Ankara, Turkey

  • Nilufer Guzoglu,

    Roles Data curation

    Affiliation Department of Neonatology, Kirikkale University, Faculty of Medicine, Kirikkale, Turkey

  • Rahmi Ors,

    Roles Data curation

    Affiliation Neonatology Division, Medova Hospital, Konya, Turkey

  • Yusuf Kale,

    Roles Data curation

    Affiliation Department of Neonatology, Cengiz Gokcek Maternity and Children's Hospital, Gaziantep, Turkey

  • Berna Hekimoglu,

    Roles Data curation

    Affiliation Department of Neonatology, Trabzon Kanuni Education and Research Hospital, University of Health Sciences, Trabzon, Turkey

  • Hakan Aylanc,

    Roles Data curation

    Affiliation Department of Neonatology, Onsekizmart University, Faculty of Medicine, Canakkale, Turkey

  • Funda Eroglu,

    Roles Data curation

    Affiliation Neonatology Division, Ankara Guven Hospital, Ankara, Turkey

  • Suzan Sahin,

    Roles Data curation

    Affiliation Department of Neonatology, Adnan Menderes University, Faculty of Medicine, Aydin, Turkey

  • Murat Konak,

    Roles Data curation

    Affiliation Department of Neonatology, Konya Selcuk University, Faculty of Medicine, Konya, Turkey

  • Dilek Sarici,

    Roles Data curation

    Affiliation Department of Neonatology, Kecioren Education and Research Hospital, University of Health Sciences, Ankara, Turkey

  • Ilknur Kilic,

    Roles Data curation

    Affiliation Neonatology Division, Atasehir Kadikoy Sifa Hospital, Istanbul, Turkey

  •  [ ... ],
  • Nilay Hakan

    Roles Data curation

    Affiliation Department of Neonatology, Mugla Sıtkı Kocman University Faculty of Medicine, Mugla, Turkey

  • [ view all ]
  • [ view less ]

Abstract

Objective

To investigate the early neonatal outcomes of very-low-birth-weight (VLBW) infants discharged home from neonatal intensive care units (NICUs) in Turkey.

Material and methods

A prospective cohort study was performed between April 1, 2016 and April 30, 2017. The study included VLBW infants admitted to level III NICUs. Perinatal and neonatal data of all infants born with a birth weight of ≤1500 g were collected for infants who survived.

Results

Data from 69 NICUs were obtained. The mean birth weight and gestational age were 1137±245 g and 29±2.4 weeks, respectively. During the study period, 78% of VLBW infants survived to discharge and 48% of survived infants had no major neonatal morbidity. VLBW infants who survived were evaluated in terms of major morbidities: bronchopulmonary dysplasia was detected in 23.7% of infants, necrotizing enterocolitis in 9.1%, blood culture proven late-onset sepsis (LOS) in 21.1%, blood culture negative LOS in 21.3%, severe intraventricular hemorrhage in 5.4% and severe retinopathy of prematurity in 11.1%. Hemodynamically significant patent ductus arteriosus was diagnosed in 24.8% of infants. Antenatal steroids were administered to 42.9% of mothers.

Conclusion

The present investigation is the first multicenter study to include epidemiological information on VLBW infants in Turkey. Morbidity rate in VLBW infants is a serious concern and higher than those in developed countries. Implementation of oxygen therapy with appropriate monitoring, better antenatal and neonatal care and control of sepsis may reduce the prevalence of neonatal morbidities. Therefore, monitoring standards of neonatal care and implementing quality improvement projects across the country are essential for improving neonatal outcomes in Turkish NICUs.

Introduction

The survival rate of very-low-birth-weight (VLBW) infants increased from about 50% to 80% after the establishment of neonatal intensive care units (NICUs) in the early 1970s [1]. The increase in the survival rate of VLBW infants has been particularly evident over the last three decades owing to improvements in perinatal and neonatal intensive care, including use of antenatal steroids, surfactant, and novel mechanical ventilation therapies [1, 2]. However, the morbidity rate remains high among VLBW infants. Morbidities such as sepsis, necrotizing enterocolitis (NEC), bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), and retinopathy of prematurity (ROP) develop in many VLBW infants during hospitalization [3, 4]. These morbidities lead to prolonged hospital stays, a risk of rehospitalization, and poor long-term outcomes.

In recent years, Turkey has developed programs to improve neonatal health and NICU care [5]. The rate of morbidity of VLBW infants is an important indicator of intensive care standards and the quality of NICU care. The medical outcomes of VLBW infants have been reported by different NICUs in Turkey [68]; however, no multicenter data regarding the morbidity of VLBW infants are available. In this study, we aimed to investigate the early neonatal outcomes of VLBW infants discharged from NICUs.

Material and methods

The study was approved by the ethical review committee of Gulhane Faculty of Medicine (Number: 02530/2016), written informed consent was obtained from the parents and the refusal rate was nearly 1.9% (65 patients). The data were analyzed anonymously.

The present multicenter study included all VLBW infants admitted to level III NICUs comprising of neonatologists. The study was conducted between 1 April 2016 and 30 April 2017. In Turkey, the total number of NICUs including neonatologists on the medical staff is 134. In total, 69 NICUs agreed to take part in the study (51% of all) (Fig 1). Heads of the NICUs and directors of hospitals gave informed consent to participate in the research.

Study population

Perinatal and neonatal data of all infants born with birth weight (BW) of ≤1500 g were collected until discharge home in survived infants. Delivery room deaths and infants who died during NICU care were not included because our study didn’t collect perinatal and neonatal data of these infants. All reported incidence proportions are on the basis of survivors only. This study also evaluated the prevalence of early neonatal outcomes of survived preterm infants born ≤32 weeks of gestation including infants > 1500 g birthweight, in a separate analysis.

The present study was promoted by the Turkish Neonatal Society. Data were collected through an online data entry system via a special network named the ‘Trials-Network’. A case report form (CRF) for each enrolled patient was completed by the participating neonatologist. All the questions in the CRF were required to be answered and “unknown” was a possible entry for some questions. The data entry system did not allow the collaborator to proceed and submit the data if no response was received for any question in the CRF. Anonymous data were entered into password protected database to maintain confidentiality. The records of infants from 69 NICUs were pooled together and analyzed at the end of the study.

The infants were excluded if they had congenital anomalies and malformations (e.g., diaphragmatic hernia, gastroschisis, atresia of the gastrointestinal tract, meningomyelocele, hydrocephalus, chromosomal anomalies, and complex congenital heart disease) from the study. The infants who died before the hospital discharge were also excluded.

Clinical characteristics

Antenatal and natal clinical data including maternal age, administration of antenatal corticosteroids, preeclampsia/eclampsia, infants of diabetic mothers, chorioamnionitis (clinical or histopathological), in vitro fertilization, multiple births and mode of delivery were recorded. Antenatal steroid therapy was considered to be given if mother received two doses of 12 mg of betamethasone intramuscularly 24 hours apart at any time prior to delivery.

Gestational age was determined as the best obstetric estimate using ultrasonography first trimester and/or date of last menstrual period. The clinical characteristics of infants including gender, gestational age (GA), BW, small for gestational age (SGA; BW< 10th percentile for gender), resuscitation in the delivery room, respiratory distress syndrome (RDS), surfactant treatment, duration of invasive/noninvasive mechanical ventilation, oxygen therapy, hemodynamically significant patent ductus arteriosus (PDA), and major morbidities were also recorded on the CRF for each patient.

The major morbidities were defined as severe IVH (> Grade II according to Papile staging) [9], NEC (≥Stage II in accordance with the modified Bell criteria) [10], BPD (supplemental oxygen requirement at 36 weeks’ postmenstrual age) and severe ROP (requiring treatment). Late onset sepsis (LOS) was defined as the onset of symptoms at >72 hours of age. Patients with systemic signs of infection as well as positive blood cultures were diagnosed as culture proven LOS and those with negative cultures were considered as culture negative LOS [11]. Survival to discharge home and survival without major morbidity were determined.

Statistical analysis

The data were collected and analyzed using the SPSS version 17.0 (SPSS Inc., Chicago, IL). The data were presented as n/N (%) for categorical variables, and as mean±standard deviation, for numeric variables. The nonparametric Kruskal–Wallis analysis was used to compare differences between the hospital groups for birth weight. Pair-wise comparisons were performed using Bonferroni adjusted Mann–Whitney U tests. The Chi-square test were performed to determine the statistical significance for administration of antenatal steroids and early neonatal outcomes among NICUs in university, state and private hospitals. A p-value of less than 0.05 was considered significant for the statistical tests.

Results

The number of live born VLBW infants admitted to neonatal care was 4335 in participating 69 NICUs during the study period, excluding delivery room deaths. The mortality was 22% during NICU care. The study included 3381 VLBW infants at discharge home.

Perinatal and neonatal data from NICUs of 39 university hospitals (n = 1617), 22 state hospitals (n = 1433), and eight private hospitals (n = 331), were obtained. The mean BW and GA were 1137±245 g and 29±2.4 weeks, respectively. The BW of 1037 (30.6%) infants was less than 1000 g and 1430 (42.3%) infants were less than 28 weeks of gestation. There were 1791 (53%) females and 1590 (47%) males in the study. During the study period, 78% of VLBW infants survived to discharge and 48% of survived infants had no major neonatal morbidity.

The perinatal baseline characteristics and outcomes of discharged VLBW infants are presented in Table 1. Antenatal steroids were administered to 42.9% of mothers. Twenty-six percent of mothers had preeclampsia, 5.6% had gestational diabetes, and 9.8% had chorioamnionitis. The rate of cesarean delivery was 86.8% and the prevalence of multiple births was 24.7%. The infants were evaluated in terms of early neonatal outcomes: hemodynamically significant PDA was detected in 24.8% of infants, BPD in 23.7%, NEC in 9.1%, blood culture proven LOS in 21.1%, blood culture negative LOS in 21.3% and severe IVH in 5.4%. The incidence of severe ROP was 11.1%. The median GA of infants with severe ROP was 27 weeks (IQR 25–28) and median BW was 860 g (IQR 720–1040).

thumbnail
Table 1. Perinatal baseline characteristics and outcomes of discharged infants with BW ≤ 1500 g.

https://doi.org/10.1371/journal.pone.0226679.t001

Table 2[]shows the perinatal baseline characteristics and outcomes of discharged infants with a GA ≤32 weeks; hemodynamically significant PDA was detected in 20.2% of infants, BPD in 19.1%, NEC in 8.4%, blood culture proven LOS in 18.2%, severe IVH in 4.7% and severe ROP in 8.2%.

thumbnail
Table 2. Perinatal baseline characteristics and outcomes of discharged infants with GA ≤ 32 weeks.

https://doi.org/10.1371/journal.pone.0226679.t002

The incidence of early neonatal outcomes of VLBW infants among NICUs in private hospitals, state hospitals, and university hospitals is shown in Table 3. The rate of administration of antenatal steroids was 26% in private hospitals which is lower than that in state hospitals (39.8%) and in university hospitals (49%). The incidence of LOS (42% vs 32% and 38%), NEC (24.5% vs 6.4% and 8.2%), bronchopulmonary dysplasia (29.3% vs 19.5% and 25.9%) and severe ROP (13.9% vs 10.9% and 10.7%) were significantly higher in private hospitals as compared to state hospitals and university hospitals, respectively.

thumbnail
Table 3. The incidence of early neonatal outcomes of VLBW infants among NICUs in university hospitals, in state hospitals and in private hospitals.

https://doi.org/10.1371/journal.pone.0226679.t003

Discussion

This is the first multicenter study to evaluate the early neonatal outcomes of VLBW infants in Level III NICUs in Turkey. The preterm birth rate is estimated to be about 11% worldwide [12], compared to 15% in Turkey. Around 23000 infants are born at less than 32 gestational weeks each year according to the Turkish Ministry of Health and Public Health Institute of Turkey (unpublished data, 2015). Our study included outcomes of 4849 discharged infants with a GA ≤32 weeks. The rest of the babies born at less than 32 gestational weeks were cared in NICUs with no neonatologists or in NICUs including neonatologists but who didn’t agree to participate in the study.

Improvements in newborn intensive care have resulted in increased survival rates in preterm infants. The survival rate of VLBW infants is reported to be between 85–90% in developed countries [13,14]. However, studies from developing countries put the survival rate at between 66–74% [1517]. During the current study period, 78% of VLBW infants survived to discharge in Turkish Level III NICUs.

Antenatal steroid administration reduces the risk of RDS, IVH, NEC, sepsis, and mortality in preterm infants [18]. In the present study, the rate of antenatal steroid administration was nearly 43%, where this ratio is dramatically lower than that in developed countries. According to reports from developed countries, the rate of antenatal steroid administration increased from 16% in the 1980s to 90% in the 2010s among mothers of VLBW infants [14,19]. The lower rate of antenatal steroid administration in Turkey might contribute to the low survival rate compared to developed countries.

The data in the present study showed that nearly 70% of VLBW infants developed RDS, and 83.3% of those infants were treated with surfactant. The rate of surfactant use ranges from 58–62% in developed countries [13,14]. It is reported that when early continuous positive airway pressure is administered, babies of 26–29 weeks’ gestation can be managed without intubation or surfactant about 50% of the time [20]. Appropriate antenatal care, good obstetric practice, safe transportation of the newborn, optimal delivery room care, and the early application of non-invasive ventilation support strategies may decrease surfactant administration in RDS management in Turkey.

The incidence of BPD varies among institutions depending on a number of factors including intensive care practices and differences in the clinical definitions of BPD [21,22]. The BPD frequency is reported to be between 22–26% of VLBW infants in developed countries [13, 14]. In the present study, the incidence of BPD was 23.7% and 19.1% in infants with a BW ≤ 1500 g and GA ≤ 32 weeks, respectively. The rate of BPD in the present study was similar to the reported figures; however, the survival rate in VLBW infants was lower than in developed countries. Selective surfactant administration using less invasive procedures, prevention of infection by the use of control measures, and monitoring of targeted oxygen saturation are recommended to reduce the incidence of BPD [23, 24].

Late-onset sepsis is a common morbidity among preterm infants and is associated with poor neurodevelopmental outcomes and growth impairment [25]. The incidence of LOS is reported to be 15–25% of VLBW infants in developed countries [26, 27]. The frequency of culture-proven LOS in a Turkish study was 22% in VLBW infants[28]. In the present study, the incidence of LOS was 42.4%, of which culture-proven sepsis comprised half of the cases.

The reported incidence of NEC in preterm infants with a GA < 32 weeks varied from 2–7% among different centers in developed countries [29]. The incidence of advanced NEC in the present study was found to be 8.4% among infants with a GA ≤ 32 weeks. The incidence of sepsis and NEC could be reduced by infection control measures, including judicious use of antibiotic therapy, proper handwashing technique, increased awareness among healthcare staff, and avoidance of overcrowding. In addition, breastfeeding is one of the most effective practices for reducing NEC and sepsis in preterm infants[30].

Patent ductus arteriosus was reported in 39% of VLBW infants and 12% of VLBW infants required treatment [20]. In the present study, the rate of PDA requiring treatment was 24.8% in VLBW infants. Symptomatic PDA is common in preterm neonates, occurring in approximately 30% of VLBW infants [14]; however, there is currently no consensus among neonatologists on the management of PDA.

The incidence of severe IVH is approximately 7–15% in VLBW infants [14]. In the present study, the incidence of severe IVH was 5.4% and 4.7% in infants with a BW ≤1500 g and GA ≤ 32 weeks, respectively. IVH usually occurs within the first 72 hours of life and is an important cause of mortality in preterm infants. The characteristics of the population in the present study, which included surviving infants, might be the reason for the lower incidence of IVH.

Retinopathy of prematurity is a serious morbidity. In developed countries, the majority of infants born at > 28 weeks who develop ROP have mild disease that does not require treatment [31]. A nationwide population-based study from the UK revealed that the incidence of ROP requiring treatment was 4% in VLBW infants; the median GA at birth was 25 weeks and the median BW was 706 g[32]. In the present study, the rate of severe ROP was 11.1% in VLBW infants and the median BW and median GA in those infants were 860 g and 27 weeks, respectively. The findings of this study show that, in Turkey, more mature and heavier babies are at risk of severe ROP.

Although survival rates have improved, the incidence of major morbidities remains a serious concern. Major morbidity for VLBW survivors was reported to decrease from 46% in 2000 to 41% in 2009 in developed countries [27]. In another study, the survival rate of VLBW infants without major neonatal morbidity was found to be 70% [14]. In this study, 48% of survived infants had no major neonatal morbidity; this rate was lower than those in developed countries.

Turkey has universal health insurance system and the families do not have to pay for their babies’ NICU stay. All residents registered with the Social Security Institution can receive medical treatment free of charge in university, state and private hospitals. In the present study, the incidence of neonatal morbidities regarding LOS, BPD, severe ROP and especially NEC were significantly higher in private hospitals as compared to other facilities. This obvious variation between types of units are associated with less administration of antenatal steroids, prolonged antibiotic use, inappropriate monitoring of oxygen, lack of breast milk, and an assumed shortage of hospital expertise.

The strength of the present study was its large, multicenter design that allowed for prospective data collection via a specialized network. However, the neonatologists did not undertake any training to standardize the definitions of potential risk factors before the study began. In this article, we reported early neonatal outcomes in survived infants while the published data usually included results in all live births, this was another limitation of the study.

In Turkey, insufficient data on the prevalence of preterm morbidities hinders the establishment of strategies to minimize adverse outcomes. The present investigation is the first multicenter population-based study to include epidemiological information on VLBW infants. The results of this study will help predict, prevent, and improve adverse outcomes in VLBW infants. It also allows defining where we should allocate future efforts and resources for the benefit of most vulnerable newborns.

The current study provides an important overview for the Turkish population and for the entire world community as a comparator. Morbidity rate in VLBW infants is a serious concern in Turkey and higher than those in developed countries. It is of paramount importance to act by extending the use antenatal corticosteroids from an obstetric perspective. From the neonatal point of view, implementation of oxygen therapy with appropriate monitoring, better neonatal care, meticulous attention to hygiene procedures, control of sepsis and training NICU health care professionals may reduce the prevalence of neonatal morbidities.

In conclusion, monitoring standards of antenatal and neonatal care and implementing quality improvement projects across the country are essential for improving neonatal outcomes in Turkish NICUs.

References

  1. 1. Horbar JD, Wright EC, Onstad L. Decreasing mortality associated with the introduction of surfactant therapy: an observational study of neonates weighing 601 to 1300 grams at birth. The Members of the National Institute of Child Health and Human Development Neonatal Research Network. Pediatrics. 1993;92:191–6. pmid:7710456
  2. 2. Iams JD, Romero R, Culhane JF, Goldenberg RL. Preterm birth: primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet. 2008;371:164–175. pmid:18191687
  3. 3. Eichen wald EC, Stark AR. Management and outcomes of very low birth weight. N Engl J Med. 2008;358:1700–11. pmid:18420502
  4. 4. Singer LT, Salvator A, Guo S, Collin M, Lilien L, Baley J. Maternal psychological distress and parenting stress after the birth of a very low-birth-weight infant. JAMA. 1999 3;281:799–805.
  5. 5. Kultursay N. The status of women and of maternal and perinatal health in Turkey. The Turk J Pediatr. 2011; 53: 5–10. pmid:21534333
  6. 6. Atasay B, Gunlemez A, Unal S, Arsan S. Outcomes of very low birth weight infants in a newborn tertiary center in Turkey, 1997–2000. Turk J Pediatr. 2003;45:283–9. pmid:14768790
  7. 7. Gebesce A, Uslu H, Keles E, Demirdoven M, Tonbul A, Basturk B, et al. Evaluation of very low birth weight infants in the neonatal intensive care unit of a university hospital. Dicle Medical Journal. 2015; 42: 137–142.
  8. 8. Guran O, Bulbul A, Uslu S, Dursun M, Zubarioglu U, Nuhoglu A. The change of morbidity and mortality rates in very low birth weight infants over time. Turk Arch Ped 2013; 102–109.
  9. 9. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subepandymal and intraventricular hemorrhage: A study of infants with birth weight less than 1,500 gm. J Pediatr. 1978;92:529–34. pmid:305471
  10. 10. Bell MJ, Temberg JL, Feigin RD, Keating J P, Marshall R, Barton L et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7. pmid:413500
  11. 11. Dong Y, Speer CP. Late onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015; 100: F257–63. pmid:25425653
  12. 12. WHO, March of Dimes, Partnership for Maternal, Newborn & Child Health, Save the Children. Born too soon: the global action report on preterm birth. (Accessed on May 04, 2012). Avaliable from:www.who.int/maternal_child_adolescent/documents/born_too_soon/en/
  13. 13. Adams M, Bassler D, Bucher HU, Roth-Kleiner M, Berger TM, Braun J, et al; Swiss Neonatal Network and the Vermont Oxford Network. Variability of Very Low Birth Weight Infant Outcome and Practice in Swiss and US Neonatal Units. Pediatrics. 2018;141. Pii: e20173436. pmid:29654158
  14. 14. Fanaroff AA, Stoll BJ, Wright LL, Carlo WA, Ehrenkranz RA, Stark AR, et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynecol. 2007;196:147.e1–8.
  15. 15. Ballot DE, Chirwa TF, Cooper PA. Determinants of survival in very low birth weight neonates in a public sector hospital in Johannesburg. BMC Pediatr. 2010;10:30. pmid:20444296
  16. 16. VLBW Infant Survival in Hospitals of India (VISHI) Study Investigators, Murki S, Kumar N, Chawla D, Bansal A, Mehta A, Shah M, et al. Variability in survival of very low birth weight neonates in hospitals of India. Indian J Pediatr. 2015;82:565–7. pmid:25689961
  17. 17. Fernández R, D'Apremont I, Domínguez A, Tapia JL. Red Neonatal Neocosur. Survival and morbidity of very low birth weight infant in a South American neonatal network. Arch Argent Pediatr. 2014;112:405–12. pmid:25192520
  18. 18. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017 21;3:CD004454.
  19. 19. Chee YY, Wong MS, Wong RM, Wong KY. Neonatal outcomes of preterm or very-low-birth-weight infants over a decade from Queen Mary Hospital, Hong Kong: comparison with the Vermont Oxford Network. Hong Kong Med J. 2017;23:381–6. pmid:28684649
  20. 20. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2016 Update. Neonatology. 2017; 111:107–125. pmid:27649091
  21. 21. Poindexter BB, Feng R, Schmidt B, Aschner JL, Ballard RA, Hamvas A, et al. Comparisons and Limitations of Current Definitions of Bronchopulmonary Dysplasia for the Prematurity and Respiratory Outcomes Program. Ann Am Thorac Soc. 2015;12:1822–30. pmid:26397992
  22. 22. Ellsbury DL, Acarregui MJ, McGuinness GA, Eastman DL, Klein JM.Controversy surrounding the use of home oxygen for premature infants with bronchopulmonary dysplasia. J Perinatol. 2004; 24:36–40. pmid:14726936
  23. 23. Aly H. Is there a strategy for preventing bronchopulmonary dysplasia? Absence of evidence is not evidence of absence. Pediatrics 2007; 119:818–20. pmid:17403854
  24. 24. Askie LM, Darlow BA, Finer N, Schmidt B, Stenson B, Tarnow-Mordi W, et al. Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA. 2018;319:2190–2201. pmid:29872859
  25. 25. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292:2357–65. pmid:15547163
  26. 26. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91. pmid:12165580
  27. 27. Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129:1019–26. pmid:22614775
  28. 28. Turkish Neonatal Society, Nosocomial Infections Study Group. Nosocomial infections in neonatal units in Turkey: epidemiology, problems, unit policies and opinions of healthcare workers. The Turkish Journal of Pediatrics. 2010; 52: 50–57. pmid:20402067
  29. 29. Battersby C, Santhalingam T, Costeloe K, Modi N. Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103:F182–F189. pmid:29317459
  30. 30. Polin RA, Denson S, Brady MT; Committee on Fetus and Newborn; Committee on Infectious Diseases. Strategies for prevention of health care-associated infections in the NICU. Pediatrics. 2012;129:e1085–93. pmid:22451712
  31. 31. Gilbert C, Fielder A, Gordillo L, Quinn G, Semiglia R, Visintin P, et al. Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs. Pediatrics. 2005; 115:e518–25. pmid:15805336
  32. 32. Adams GGW, Bunce C, Xing W, Butler L, Long V, Reddy A, et al. Treatment trends for retinopathy of prematurity in the UK: active surveillance study of infants at risk. BMJ Open 2017; 7:e013366. pmid:28325857